PET imaging of (86)Y-labeled anti-Lewis Y monoclonal antibodies in a nude mouse model: comparison between (86)Y and (111)In radiolabels.

نویسندگان

  • A Lövqvist
  • J L Humm
  • A Sheikh
  • R D Finn
  • J Koziorowski
  • S Ruan
  • K S Pentlow
  • A Jungbluth
  • S Welt
  • F T Lee
  • M W Brechbiel
  • S M Larson
چکیده

UNLABELLED Absorbed doses in (90)Y radioimmunotherapy are usually estimated by extrapolating from (111)In imaging data. PET using (86)Y (beta(+) 33%; half-life, 14.7 h) as a surrogate radiolabel could be a more accurate alternative. The aim of this study was to evaluate an (86)Y-labeled monoclonal antibody (mAb) as a PET imaging agent and to compare the biodistribution of (86)Y- and (111)In-labeled mAb. METHODS The humanized anti-Lewis Y mAb hu3S193 was labeled with (111)In or (86)Y through CHX-A"-diethylenetriaminepentaacetic acid chelation. In vitro cell binding and cellular retention of radiolabeled hu3S193 were evaluated using HCT-15 colon carcinoma cells, a cell line expressing Lewis Y. Nude mice bearing HCT-15 xenografts were injected with (86)Y-hu3S193 or (111)In-hu3S193. The biodistribution was studied by measurements of dissected tissues as well as by PET and planar imaging. RESULTS The overall radiochemical yield in hu3S193 labeling and purification was 42% +/- 2% (n = 2) and 76% +/- 3% (n = 6) for (86)Y and (111)In, respectively. Both radioimmunoconjugates specifically bound to HCT-15 cells. When cellular retention of hu3S193 was studied using (111)In-hu3S193, 80% of initially cell-bound (111)In activity was released into the medium as high-molecular-weight compounds within 8 h. When coadministered, in vivo tumor uptake of (86)Y-hu3S193 and (111)In-hu3S193 reached maximum values of 30 +/- 6 and 29 +/- 6 percentage injected dose per gram and tumor sites were easily identifiable by PET and planar imaging, respectively. CONCLUSION At 2 d after injection of (111)In-hu3S193 and (86)Y-hu3S193 radioimmunoconjugates, the uptake of (111)In and (86)Y activity was generally similar in most tissues. After 4 d, however, the concentration of (86)Y activity was significantly higher in several tissues, including tumor and bone tissue. Accordingly, the quantitative information offered by PET, combined with the presumably identical biodistribution of (86)Y and (90)Y radiolabels, should enable more accurate absorbed dose estimates in (90)Y radioimmunotherapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo biodistribution, PET imaging, and tumor accumulation of 86Y- and 111In-antimindin/RG-1, engineered antibody fragments in LNCaP tumor-bearing nude mice.

UNLABELLED To optimize in vivo tissue uptake kinetics and clearance of engineered monoclonal antibody (mAb) fragments for radiotherapeutic and radiodiagnostic applications, we compared the biodistribution and tumor localization of four (111)In- and (86)Y-labeled antibody formats, derived from a single antimindin/RG-1 mAb, in a prostate tumor model. The IgG, diabody, single-chain variable domain...

متن کامل

Radioimmunolocalization of human gastric carcinoma xenografts SY 86 B and SY 86 D with 131I-labeled monoclonal antibody.

The suitability of individual MAb for application in vivo should be carefully confirmed. The monoclonal antibody GL-013, with specific binding reactivity in vitro to human tumors of the gastrointestinal tract, was radioiodinated and injected intraperitoneally into nude mice bearing human gastric carcinoma xenografts SY 86 B (moderately differentiated glandular adenocarcinoma) and SY 86 D (signe...

متن کامل

In vivo biodistribution of a humanized anti-Lewis Y monoclonal antibody (hu3S193) in MCF-7 xenografted BALB/c nude mice.

The biodistribution characteristics of a humanized anti-Lewis(y) antibody (hu3S193) radiolabeled to three radioisotopes, 125I, 111In, and 90Y, were examined in a BALB/c nude mouse xenograft model of breast cancer. The immunoreactivity of both 125I- and 111In-bound hu3S193 exceeded 50% and was 20% for 90Y. In vivo, labeled antibody was shown by gamma camera imaging and immunohistochemical and au...

متن کامل

PET Imaging of Soluble Yttrium-86-Labeled Carbon Nanotubes in Mice

BACKGROUND The potential medical applications of nanomaterials are shaping the landscape of the nanobiotechnology field and driving it forward. A key factor in determining the suitability of these nanomaterials must be how they interface with biological systems. Single walled carbon nanotubes (CNT) are being investigated as platforms for the delivery of biological, radiological, and chemical pa...

متن کامل

Pharmacokinetics and Biodistribution of (86)Y-Trastuzumab for (90)Y dosimetry in an ovarian carcinoma model: correlative MicroPET and MRI.

UNLABELLED Preclinical biodistribution and pharmacokinetics of investigational radiopharmaceuticals are typically obtained by longitudinal animal studies. These have required the sacrifice of multiple animals at each time point. Advances in small-animal imaging have made it possible to evaluate the biodistribution of radiopharmaceuticals across time in individual animals, in vivo. MicroPET and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 42 8  شماره 

صفحات  -

تاریخ انتشار 2001